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ON' THE ENERGY LEVELS OF A lVIODEL 
OF THE COMPRESSED HYDROGEN ATOM 
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Van der \Vaa!s · La l>ora torium . Ge IllP('nte·UnivE' rs itr it , Ams t (' rdam 

Summary 

In the proble m o f the " compressed h y d roge n ato m" the bounda l'y co n
dition that the wave functi on q> must be ze ro fo r in finite Y, is replaced by 
the condition tha t q> must h a ve a ze ro po in t a t a finite r = Yo . This lead s 
to an investigation o f prop erties o f the zeros o f the confluent hypergeo
metric fu n ction . The shifts o f the Is, 25 and 2p le \'els by co mpress io n a re 
calculated a nd tables a nd gra phs are g i\'en for corresp onding values o f the 
energy and of Yo' 

§ I. Introi1tction. In the usual treatment of th e S c h rod i n
g e r equation for the hydrogen atom the boundary conditions 
imposed on the wa ve function 9 are : regul ar behaviour in tht' origin 
and a node at infinity . It will howeYer be supposed here that the 
hydrogen atom is enclosed in a sphere of radius Yo 1) 2) . At the po
sition Yo is an infinitely high and st eep potentia l wa ll. So the wave 
function must now have a zero point a t r = ro instead of at y = 00. 

The new boundary concli t ion influences only the radia l part R(r) 
of the wave function. The equa tion for R(r) ca n be written in atomic 
lIni ts *) : 

d
2
R +2 dR + (2£ +2_l(l +I)}R = 0, 

dy2 r dr t r ,2 

with E the energy a nd l zero or a positive integer. 
\\,ith the relations 

p = 2Y/1;' and E = - 1/21£2, 

(I ) 

(2) 

. ) F unda me nta l units e, III, a nd A = " / 21': . T h(' unit o f lE' n gth is the n a. = n !/ III~' and 
lhe unit of energ y is ella. (~t i c h .~ I s, D e B 0 c r a nd U ij II) l ak(' c'I2a. as unit o f 
!'ncr g)'). 
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670 S. R. DE GROOT AND C. A. TEN SELDAM 

defining 1t and p, the equation reads: 

Substituting 

d
2
R -+-~ dR _{~_~ + l(l +lh R _ O dp2 . p dp 4 P p2 j -. 

R = c1p pi F(p), 

we get the equation: 

d2F dF 
p dp2 + (21 + 2 -- p) tip + (n - I --l) F = 0 

for the confluent hypergeometic function *) 

F = F (I + I - n, 2l + 2, p). 

(3) 

(4) 

(5) 

(6) 

When n is an integer the series expansion for F hreaks off so 
as to give derivatives of Laguerre polynomials. The wave function 
then has a node at Yo = 00, being the normal boundary condition 
of the free hydrogen atom. 

The purpose of this article is to calculate how the Is, 2s and 2p 
levels of the hydrogen atom are changed when it is uniformly 
compressed, i.e. when a node lies at finite Yo' The energy levels are 
shifted to higher values through the influence of the potential wall. 
Corresponding values of energy E and radius Yo of the cage will be 
calculated for the whole range beginning with the large values of Yo. 

The notation tl "I s, 2s and 2p level" will be maintained, although 
the number n is only an integer for Yo = 00. The quantum number 
I is of course not changed by compression. 

§ 2. The method 0/ lv[ i cite l s, DeB 0 e y and B ·i j l. For a 
radius Yo so large, that the deviation of E from its value at Yo = 00 

is still very small, :'Ii i c h e 1 s, DeB 0 e rand B ij I 1) have 
developed an approximative method. They calculated the shift 

a. a.(a. + I) p' 
F{a., y, p) = I + - P + - + .. .. 

y y(y + I) 2! 
(7) 

The confluent hypergcometric fun ct ions ha\'c specia lly been investigated by W hit t· 
a k e r 0). The connection of his SY'11bols k, In and z with the variables I, n, and p used 
here is: I: = II, III = 1 + '/. andz = p. B u c h hoI z") parametersv=:= i-;, p and"=iC 
are v = n, p = 21 + I and < = p. 

t) Indicatin l: the first synlbol of thi , notation by .V and the second by I, the numJx>r N 
can be defined by saying that the wavc function ".VI" h:ls .\' -/- 1 nodes between its 
limiting points. This "principal '-tuantum number" .V coincides with the variable /I 

(corresponding with E by formula (2)) for ro = 00 only. 
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ion reads: 

_ {~_ ~ -I- l(l + I h R = 0. 
4 P p2 j 

(3) 

(4) 

-- ,,) dF + (.1'£ _ 1 -- l) F = 0 (5) 
I" dp . 

netic function *) 

+ 1 - n, 2l + 2, pl. (6) 

_e series expansion for F hreaks off so 
guerre polynomi als. The wave fun ction 
, being the normal boundary condition 

,Ie is to calculate how the 1 s, 2s and 2p 
Jm are changed when it is uniformly 
:le lies a t finit e Yo ' The energy levels are 
ough the influence of the potential wall. 
ergy E and radius 1'0 of the cage will be 
1ge beginning wi th the large values of Yo · 
l 2p level" will be maintained, although 
teger for Yo = =. The quan tum number 
by compression. 

c it e l s , D e B 0 C y and B ·i j l. For a 
tlevia tion of E from its value at Yo = = 

e 1 5, D e R o c r a nd B ij I 1) have 
ve method. They calcul at ed the sn ift 

Q( IX (IX + I ) pi 
- p + - + .... 
y y(y + I ) 2! 

(7) 

l('lions have spec ially been investiga led by \ \. h i I t 
mbols k , /II ;tnd z with the v:lriables I, II, ;tnd i' u~d 
p. U 1I C h h oI 2' ' ) p;trametcrs v == i-:. p and ==,,~ 

thi s nota t ion by .V and t h,' second by /, the numtx'r tV 
":l\,C fu nc t ion " .\'/" has.\' - 1- 1 n odes be t ween it s 
uantu lU number" .V coincid('s with the variabl~ /I 

2)) for r. = 00 on ly. 
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of the ground state 1 s, but their method can easily be extented 
to the higher levels. H ere it will also be calculated for the 2s and 2p 
levels. 

00 

Putting F(p) = Lb"p" and inserting this in the differential equa-
,,= 0 • 

tion the following recursion formula is obtained: 

-r(-r + 2l + I) b" = (-r + l- n)b.,_--t- (8) 

If n is an integer the series breaks off and gives a polynomial 
of the degree n -l- I. In that case the wave function has a 
zero point a t Yo = = . If however Yo i.s not infinite, but still large 
enough that n is nearly an integer, we can put 

n = N + ~ with N integer and I ~ I ~ N (9) 
and 

1 
E = - -2 = 

2n 
1 1 ~ 

2(N + ~)2::: - 2N2 + N3' (10) 

where the first term in the last member represents the energy 
value for Yo = =. 

Substituting this in the recursion formula (8) and applying I~I ~N, 

apprOXll11at lOns for the coefficients b" are found. With the boundary 
condition that, for finit e Yo . reads: 

F(po) = 0, (11) 

one can easily find the first order correction for the Is-level, 
where N = 1 and l = 0: 

(12) ~ "" ----;-
i-'h - 00 I 00 2" 

L ( ) I Fo L Yo ,, ~. I -. -r + I . ,, = 1 -; (-: + I)! 

the formula of M i c h e I s , DeB 0 e rand B ij 1. 
The calculatiOlls for th e 2s and 2p levels. where N = 2 and 

l = ° and I, yield: 

fJ I""W -!Fo·- I 
;-2. - 00 1 

- 'ho + ~ -(-- I) .(- I ) I Fo 
T= 2 " \ '" ~ T' 

~2P::: 00 I 
6 ~ ---- F" ... -(- , 3) I 0 T= l. 10 T . 

• (13) 
00 I 

--1Yo+ .,.:2-.(-:- 1) (-: + I) 'Yo 
1 (14) 

1\1 i c h e I 5, D e B 0 e rand B ij I found the energy values of 
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the Is-level fOf Yo = 5,6,7 and 8 atomic units, and So m m e f

f e I d and \V e lk c r~) applied the formula (12) to Yo = 3 and 4 
atomic units. 

Numerical calculation of the sums, occurring in the expressions (12), 
(13) and (14) can be largely simplified, because it can be shown that they 
are related to the exponential ir>tegral, that has been tabulated 5) . To 
prove this first of all it can be stated that the sums of equations (12) and 
(14) are of the general typ~ 

00 xT' 

'" ,,::1 -;(-; + m)! 
( 15) 

whereas the sum in (13) is equal to 

( 16) 

The functions Im(x) can be connected to the general "exponential inte
gral", that will be represented here by the symbol Fi: 

" Fi",(x) =j£;"X-"'d:.:, (17) 
1 

with the following relation 

1m (x) = {Fim +1 (x) + g",(x) - (m!)-I. In x} + Im( 1) - ,','",(1). (18) 

where g", I S a polynomial in x-I: 

'" 
f!m = ~ -_--~ 

T = 1 .(m - .). ~ 
(19) 

The formula (18) can be derived by developing the exponential undel' 
integral sign of ( 17) and integrating by terms. 

The su InS Im( 1) are constants; for instance: 

ft(1) = 0.59962032, h(1) = 0.19066925 and 13(1) = 0.04635136 (20) 

Partial integration leads to a recursion formula for the functions Fi 
of (17) 

III Fi", + dx) = Fi,n(x) - .xx-m + c, (21) 

so that Fi", can be expressed with Fil and e lementary transcendent 
function s. Last!\· Fi} is, apart from an additive constant, equal to the 

tabulated 5) expone ntial integral Ei: 

Tid.r) = Ei (x) - Ei(l) = l:.·i(x) - 1. 895 168. (22) 

where 
-£ 00 

I-:i(x) = lim (j ttrl cit + J Gt rl dt). (23) 
£~o -00 +£ 

The formulae (15)-(22) enab le a simple calculation of the express ions 
(12)-(14). 
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7 and 8 atomic units, and So m m e r
lpplied the formula (12) to ro = 3 and 4 

the sums, occurring in the expressions (12), 
iimplified, because it can be shown that the·" 
ial iptegral, that has been tabulated 5). T~ 
Ie stated that the su ms of eq uations (12) and 

00 

~ 
7=1-:(-: + m)! 

( IS) 

'qual to 

2(.1') - II (x) + ix. (16) 

- connected to the general "exponential inte
d here by the symbol Fi : 

s 
fm(x) = f ["X-

m dx, (17) 
1 

,,(x) - (1/I!)-I.ln x} +.1",(1) -gm(1), (18) 
;r-J. 

"' = ~ 
T= I -:(1Il - ,) ! x T (19) 

derived by developing the exponential under 
:grating by te rms. 
nts; for instance : 

= 0.19066925 and f3( I) = 0.04635136 (20) 

to a recursion formula for the functions Fi 

(x) = Fi",(x) - ~ ·~x-'" + e, • (21) 

ssed with Fil and elementan' transcendent 
!art from an additive constant, equal to the 

tegral Ei : 

- Ei(l) = l:: i( x) - 1.8951 68, (22) 

-€ 00 

n (J ttrl eft + J ~I /-1 dl ) . 
·0 - 00 +e 

(23) 

nable a simple calculation of the expressions 
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In the region of large x it is sometimes convenient, in view of the slow 
convergence of the series (12)-( 14) and the occurance of nearly eq ual terms 
of opposite sign in (18) to use the known semi-convergent asymptotic 
expansions of the exponential integral. 

Table 1 contains the results of the calculations. In figures I and 2 
the energy E is plotted as function of the radius ro of the sphere 
in which the hydrogen atom lives. The dotted lines represent the 
asymptotic approximations of this paragraph. 

TABLE I 

I 
E 

I 
E E 

'. Is level 2s leve l 2p level 

00 -'I. _'I. _'I. 
20 -0.12499 -0.12500 
15 -0.12451 -'-0. 12477 

10 -0.1162 -0.1194 
9 -0.1118 -0.1169 
8 -0.49997 ') -0.1055 -0. 11 24 
7 -0.49986 ') -0.0974 -0.1058 
6 -0.49927. ') 
5 -0.49655 ') 
4 -0.4852 I) 

3 -0.4475 .) 

~'. 

-0.4 

, 
E " 

.,.;:t,. t- - - :. -==-=-=----
"",II. 

Fig . .!:. Detail of the (E, ro)-curve for the Is level. The dotted line illdl c at('~ 
the asymptote fOll nd by the method of M i c h e I s, D c H () t' r ;11'.1 

B ij 1. The line E = - 0.5 is also an asymptote . 

The exact curves that will be calculated in next sl'ctiol\ .111' 111 -

dicated by the symbols Is, 2s and 2p. The cleviation~ of tlt t' .1 ")'1111 " 
totes calculated here from the real curve show where til l' .1 \'1'1("1 -

mative method is valid, when a certain acclIr3cy is c!1'1""I\ . 1\ 11 1111' 

2s and 2p leyels the approximation is only applicable d u wll til .1 

value of ro, much larger than that for the 1 s level. 
Physica XII 4 .1 
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674 S . . R. DE GROOT AND C. A. TEN SELDAM 

The second level has split up into two adjacent levels, sllch that 
the 2p orbit is more stable than the 2s orbit. 

o·;---TT---r..---+--+--f--T-'-'-=.Jl!!"·" 

-0.050 

-0. 100 

-0.125 
atomic 

101"". 

Fig. 2. Detail of the (E, ro}-curves for the 2s- and 2p-Ievels. Dotted lines 
are the tangents at E = 0 and the asymptotes of the approximation of § 2. 

E = - 0.125 is also an asymptote for both curves. 

§ 3. Nodes of the wave f1mctions. When certain values of the azi
muthal quantum number l =- 0, 1, 2. . . .. and of the energy E 
(corresponding with n by formula (2) ; n can eventually be imaginary 

TABLE II 

The L<-level (N = I, I = 0) 

I 
E I atomi: units I from 

11 atomic units section 

I -0.500 00 3a 
1.004 -0.4960 5.020 3b 
1.017 -0.4834 4.068 3b 

1.064 --0.4417 3.192 3b 

1.123 -03965 2.807 3b 
1.236 --0.3273 2.472 3b 
1.467 -0.2323 2 .200 3b 

1.500 -0.2222 2.178 3b 
2 -0.1 250 2.000 3a 

2.500 -0.0800 1.934 3b 
3 --0.0566 1.902 3a 

00 0 1.835 3c 
31 0.0566 1.778 3d 
2i 0.125 I. 711 3d 
i 0.500 1.448 3d 
0.573 i 1.928 I. 15' 31 
0.509 i 2.193 1.08' 31 
0.446 i 2.518 1.01 31 
0.382 i 3.427 0.91 31 
0.318 i 4.935 0.81 31 

Oi <Xl 0 3e 

I 
I 

O~ 
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lit up into two adjacent levels, such that 
than the 2s orbit. 

\ 2, 
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10., 1"\' 
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\ I-- _ -:::-;;::_~ _ __ .l __ l. __ .:-=- ___ _ 

;urves for the 2s- and 2p-levels. Dotted lines 
d the asymptotes of the approximation of § 2. 
Iso an asymptote for both curves. 

~nctions. When certain values of the azi-
1 = 0, I, 2, .. .. and of the energy E 

nnula (2) ; n can eventually be imaginary 

t TABLE II 

I.,-Ievel (N - I, I - 0) 

E 
I atom:; units I 

from 
iomic units section 

0.500 00 3a 
-0.4960 5.020 3b 
-0.4834 4.068 3b 
-0.4417 3.192 3b 
-03965 2.807 3b 
-0.3273 2.472 3b 
-0.2323 2.200 3b 
-0.2222 2.178 3b 

0 .1250 2.000 3,. 

-0.0800 1.934 3b 
-0.0566 1.902 3a 

0 1.835 3c 
0.0566 1.778 3d 
0 .125 1. 711 3d 
0.500 1.448 3d 
1.928 1. 15' 3/ 
2.193 1.08' 3/ 
2.518 1.01 3/ 
3.427 0.91 3/ 
4.935 0.81 3/ 
00 0 3c 
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and non-integer) are chosen, the wave function (4), (6) is known as 

function of Y or p. 
Each time when a zero point of this wave function is found this 

node can be considered as the radius Yo of the cage in which the 
hydrogen atom is compressed. This gives sets of corresponding 
values of E and roo For 1 = 0 and no nodes between y = 0 and 
r = ro a point of the 1 s-level energy curve is found. 

When for· 1 = 0 there lies one node between the limiting points 
of the coordinate r, this is a \,,'ave function of a 2s-state. For l = I 
and when no zero point occurs, one finds points of the 2p-curve, 
etcetera. The various regions of energy will no\\' be considered and 

methods described of finding nodes. 
a) E < O. When n is an integer, the wave function degenerates 

i.nto a derivative of a Laguerre polynomial, with a number of 

TABLE III 

The 2; -le\'el (.V = 2, I = 0) 

I 
E 

\ atom;; units I trum 

" atoihic \Ini ts sc.~c tiun 

2 -0.1250 00 3a 

2.072 -0.1165 10.36 3b 

2.213 -0.1021 8.852 3b 

2.5 -0.0800 7.815 ;lb 

2.559 -0.0764 7.677 3b 

2.885 -0.0601 7.212 3b 

3 -0.0566 7.096 3a 

3.412 -0.0429 6.824 3b 

3.5 -0.0408 6.785 3b 

4 -0.0312 6.611 3a 

5 -0.0200 6.429 3a 

00 0 6.153 3c 

4 i 0 .0312 5.808 3./ 

3. 0.0556 5.589 3.1 

2. 0.1250 5.111 3d 

• 0.5000 3.823 3d 

0.902 i 0 .6 143 3.609 3d 

0.6371' 1.234 2.91" 31 

0.557 i 1.611 2.67 3/ 

0.477 i 2.193 2.39 3/ 

0.446 i 2.518 2.26' 3/ 

0.414 i 2.920 2.15 3/ 

0.382 i 3.427 2.03 3/ 

0 .350 i 4.078 1.92 3/ 

0.318 i 4.935 1.76 31 

0 i 00 0 3, 
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TABLE IV 

The 2p. l~vel (N - 2, I ~ 1) 

I E I aloll1~; units I f rom 

" atomic units s('ction 

2 -0. 1250 00 3a 
2.047 -0.1193 10.235 3b 
2. 135 --0. 1097 6.540 3b 
2.363 -0.0895 7.069 3b 
2.5 -0.0600 6.701 3b 
2.599 -0.0740 6.497 3b 
3 -0.0566 6.000 3<1 
3.5 -0.0406 5.696 3b 
4 -0.0312 5.528 3a 
5 -0.0200 5.355 3a 

00 0 5.086 3c 
4 i 0.0312 4.770 3d 
3i 0.0556 4.554 3d 
2i 0.1250 4.110 3d 
i 0.5000 2.698 3d 
n.776 i 0.8261 2.528 3d 
0.445 i 2.524 1.66 3; 
0.401. 3.116 1.55 3! 
0 .356 i 3.943 1.41 31 

0 i 00 0 3e 
-

n -1- I nodes between the points r = 0 and r = 00. For several 
values of n and for l = 0 and 1 zero points have been calculated and 
given in tables II-IV (indication § 3a) and represented in the fi
gures 1-3. Here again the splitting up of the second level into 2s 
and 2p curves is evident. It is obvious th at by using only integer 
values of n a large gap in the curves is left between n = 1 + I 
and n = 1 + 2 i.e. between ro = 00 and a comparatively small 
value of roo On the side of large radii ro this gap could be filled by the 
method of § 2, but this gives only approximative values. 

b) For the rest of the gap in the curve it is necessary to find 
zero points of the confluent hypcrgeometric funct ion with real 
arguments. These can be interpolated from tables 6) 7) with the 
help of well-known interpolation procedures (v. tables II-IV and 
figures). 

c) E = O. The limiting case of n -+ 00 has been studied by 
So m mer f e I d ann WeI k e r 2), especially for the Is level. The 
confluent hypergcometric function (6) for 1t -+ 00 is proportio:lal 
to aBe sse I function: 

lim F(l + I -Il, 21 + 2,p) C'..) J 21+1(2Vpll) = J21 +1(2V2r} . (24) 
.. ~oo 
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TABLE IV 

p·level (N - 2, I = I) 

E I aIOIll:C° units I from 
/Otic units s('ction 
-0.1250 00 3a 
-0.1193 10.235 3b 
-0.1097 8.540 3b 
-0.0895 7.089 3b 
-0.0800 6.701 3b 
i-O.0740 6.497 3b 
-0.0566 6.000 Ja 
--<l.0408 5.696 3b 
---{).0312 5.528 3a 
--<l.0200 5.355 3a 

0 5.086 3c 
0.0312 4.770 3d 
0.0556 4.554 3d 
0.1250 4.110 3d 
0.5000 2.698 3d 
0.8261 2.528 3d 
2.524 1.68 3j 
3.116 1.55 3{ 
3.943 1.41 3f 
00 0 3e 

the points r = 0 and 'Y = 00. For several 
:ld I zero points have been calculated and 
lication § 3a) and represented in the fi-
splitting up of the second level into 2s 

It is obvious that by using only integer 
n the curves is left between n = l + I 
en 'Yo = 00 and a comparati\"ely small 
uge radii 'Yo this gap could be filled bv the 
es only approximative value!'. -

gap in the curve it is necessarv to find 
lent hypergeometric function ~\"ith • real 

interpolated from tables 6) ' ) with the 
,olation procedures (v. tables lI-IV and 

~ case of it -+ 00 has been -lUdied bv 
elk e r 2), especially for the Is level. Th'c 
function (6) for 11 -+ 00 is proportional 

(24) 
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The first and second node of II gIve the values for the 15 and 25 
level. The fIrst zero point of 13 gives the intersection of the 2p 
1<-vel with the 'Yo-axis. (v. tables II-IV and figures) . 

i 

-. 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Fig. 3. The (E, Yo)-curves for the Is, 2s and 2p-levels. Asymptotes are the 
dotted lines and Yo = 0, E = - 0.5 (for the Is surve) and E = - 0.125 

(for the 2;; and 21> curves). 

So m mer f e I d and \V el k e r stressed the importancc of a more 
general investigation of the behaviour of confluent hypcrgl'ollletric 
functions F in the neighbourhood of /I = 00 or E = O. For that purpose 
function F of equation (6) must be expanded as a power-series ill II - I. By 
the definition of F (7) and with (6) and (2) the wave fllllctioll C;!1l h,' 
written: 

00 (_I)k (2rl (21+ I)! k 
F(l+ 1- 11,21 + 2, 2m- I ) = ~ II {1-(l+V)II- I

} . (25) 
k =O k!(21+k+l}! _= 1 

k 
The product can be written as the sum ~ (-1)- (/~" 11- - whL"fl' II~" 

v=o 
is the su m of the (~) prodllcts of v different numbers of tit" ,.,,' 1"'" 
I + 1,1 + 2, . ... ,1 + k (without repe titions). The first tltrel' 0 ) .tr,. 

(/~,l = I, (20) 

a~,l = kk(k + 21 + 1). ( 7) 

a~,l = k(k - 1) UI2 + !(k + 1) I -i- 1.'24 (k + 1) (3H - 21}. (2:ll 

0l The X I' w ton relations ') th,lt call ~\"l'lltunl1y hI' used to c:t1c lll .,l'· th. ·"" ,,,.-Ift · 

ricnts are of course also valid hpre. 
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The confluent hypergeometric function can now be expressed as: 
00 

F(l + 1 - n, 21 + 2, 2rn- l ) = :E n-v <I>/,v (r), 
v~O 

(29) 

with 
00 (_ l)k ak,l (2r)k. 

<I>/.v = (- qv (21 + I)! :E v 
k=v k! (21 + 1 + k)! 

(30) 

The functions <I>l,v' can be transformed to sums of Be sse I func
tions. when the coefficients a~·l are written in a convenient form. It 
follows then that the first functions <I>l,v are, when the abbreviation 

z = 2V2r is used: 

<I>1,O(Z) = (21 + I)! (!z)-21-lhl+dz). (31) 

<I>/,I(z) = !(21 + I)! (!z)-2/+lh+I(Z), (32) 

<I>1.2(z) = i.(21 + I)! [{ (!x)-21-1 (8/3 + 12/2+41) + (!z)-21+1(21+2) + 

+3(tz)-21+3} hl+dz) +{- (!z)-21 (412+4/) _2(!z)-21+2} I21(z)]. (33) 

To obtain these expressions. a:,I/k! should be written down as a sum of 
reciprocal factorials; so is e.g. the form 

a~,l = 1/.12 +'1.1 + I 1M + 'I. I 11. 
k! (k - 2)! . + (k _ 3)! T (k _ 4) ! (34) 

appropriate. After that, recurrence formulae for the Be sse 1 func
tions should be applied. 

Of special interest for the electronic levels, studied is this note, are the 
cases 1 = 0: 

elIo,o(z) = (l/,z)-III(Z), 

<I>O,I(z) = 1hz II(z), 

elIO,2(z) = {l/.,(l/,z) + 1/.(1 /,z)3} II (z) - 1/12(I/.z)2 Io(z), 

(35) 

(36) 

(37) 

and I = I: 

<I>I,O(z) = 6(1/.z)-3 h(z), (38) 

elIl.dz) = 3(' /,z)-1 h(z), (39) 

<I>1.2(z) ={6(1 /,Z)-3 + ('/,z)-I +'/.('/,z)} h(z) +{-. 2('/,z)-2_,/,} h(z). (40) 

To find the character of the (E, ro)-curve in the neighbourhood of 
E = 0 or n-I = 0 it IS necessary to consider the nodes ro of F or, by way 
of approximation, of a certain number of terms of the development (29) 
When we take: 

(4 I) 

and put 
(42) 

where roo is of zeroth order and rOI and r02 of first and second order in n-I , 

it is found after expanding the function ell in T a y lor series and equa
ting terms of eq ual order 2) : 
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letric function can now be expressed as: 
00 

+ 2, 2m-I) = ~ II-v !P"v (1'), 
v- a 

+ I)! i' (- I)k a~,l (2r)k. 

k=v k! (21 + I + k)! . 

(29) 

(30) 

e transformed to sums of Be sse I func
s a!,1 are written in a convenient form. It 

functions !P/,y are, when the abbreviation 

(21 + I)! (tz )-21- I12I+ I(Z), (3\) 

t(21 + I)! (!z)-21+ I12,+I (Z), (32) 

-2/-1 (8l3+ 12t2+41)+(!z)-21+ I(21+2) + 

- (;z )-21 (4P+41) -2(tz)-21+2} J2/(z)]. (33) 

ms, a:"/k! should be written down as a sum of 
~ . the form 

• 1 + 1 1/,l + "I. ' / --+ +' 
2)! (k - 3) ! (k - 4) ! (34) 

currence formulae for the Be sse I func-

electronic leve ls, studied is this note, are the 

(z) , 

h(z)' 

h(z), 

(35) 

(36) 

(37) 

(38) 

(39) 
+'t.('/.z)} J3(Z) +{_. 2('/.z)-2_" .} J2( z). (40) 

. the (E, ro)-curve in the neighbourho~d of 
sary to conSider the nodes TO of F or, by way 
in number of t erms of the development (29) 

~-I !P, I + 11-2 !P, 2 = 0 , .' (41) 

= TOO + Ta l + 1'02 . (42) 

nd Tal and 1'02 of first and second order in n-I 

he fu nction !P in T a y lor se ries and eq ua~ 

4"¥iEiG Ji t • I' lrei ab' d 
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<1>,.0 (roo) = 0 or Jl+I (2V 21'00) = 0 gives TOO' 

Tal = 0, 

<1>;.0 (TOO) 1'02 + 1/-2 <1>/.2 (roo) = 0 gives 1'02' 

(43) 

(44) 

(45) 

It follows by usin g some re la tions between B e s se;l functions and 
their derivatives. that for s-Ie vels (I = 0) : 

(46) 

so that. in total : 

(47) 

this being the equation of the tangent in E = 0 at the (E. TO) curve for 
a s-level. with roo following from the nodes of the Be sse I function JI' 

The first node gives the tange nt of the Is -leve l : 

TO = 1.835 - 1.123 E. 

whereas the second node gives the tangent of the 2s-leve l: 

1'0 = 6. 153 - 12.620 E . 

FOI the p-levels (I = I) it is found after a simple calculus that 

1'02 = n-
2 (tToo + t?aol. 

and so for the tangent 

TO = TOO + n-2 (troo + !4). 

1'0 = TOO - E(froo + t r5o) . 
with roo from h(2y' 2roo) = O. 

(48) 

(49) 

(50) 

(51) 

(52) 

For the 2p-le vel we need the first node of h. so that the tangent is 

YO = 5.086 - 12.015 E. (53) 

The tangents (49) and (53) a re indicated in fi g ure 2. 

d) E > O. In the region of positive energies *), the confluent 
hypergeometric function (6) has imaginary parameters nand 
p (v.(2)) . No tables for this region being available for t = 0 and 
l = I, zero points have been calculated by using for the confluent 
hypergeometric function the series expansion of B u c h hoI z 4). 

The result s are given in tables II-IV and plotted in figure 3. 
e) E -+ 00. For the asymptotic case of small radii Yo and thus 

large positive energies in the problem of the encaged hydrogen atom 
the influence of the proton on the electron can be neglected in 

.) The curve of reference 2 is only roughly ske tched in that region and numerically not 
reliable. 



I 

680 S. R. DE GROOT AXD ~. A. TE~ SELDAM 

comparison with the action of the potential wall. To show this let n 
approach zero in the equation (3), giving: 

d
2
R + 2 dR _ {~ + 1(1 + 1 )} R = 0 

dr/ p dp 4 p2 

or modified by writing p = 2m-1 = 2ir V2E (2) 

d2R -L 2 dR + f2E _1(1 + I)) R = 0 
dy2 ' y dr 1. .y2 J . 

(54) 

(55) 

This is indeed the equation of the particle in a spherical box. 
The solutions of (55) are the B e sse I-functions 

lIH(YV2E) , (56) 

that can also readily be found as an asymptotic case of (4) for E -'>- 00 

as a series expansion shows. 
For I = 0 the B e sse I function (56) has nodes at Yo V2E = qr. 

where q is an integer. So for the energy curve of the 1 s level the 
cubic hyperbole 

E = r.2/2y~ (57) 

is found to be an asymptote. For the 2s level it: is: 

E = 2,(l/?a, (58) 

whereas for I = 1 the first node of (56) lies at Yo v2E = 4.4934 

so as to give 
E = 10 . 0953/y~ (59) 

for the asymptote of the 2p level. All three asymptotes are indicated 
in figure 3 as dotted lines. The Yo = 0 axis is evidently also an 
asymptote of the energy curves calculated. 

/) By plotting E-'. as a function of Yo, the asymptotes (57), 
(58) and (59) become straight lines through the origin, being there 
tangent to the corresponding (E-i, Yo) curves. It is easy TO find 
now gra.phically points of the (E, Yo) curve. 

The results a.re listed in tables lI-IV with the indication § 3i 
and represented in figure 3. 

g) Although it follows from section c of this paragraph th;1.t the 
energy values E for lim Yo -'>- 0 are the arne as for a spherical box, 
it is not allowed to conclude that the quantum mechanical average 
potential energy V is zero, as \vith the box. 

]n fact, it is only tme that lim VIE = O. Taking the vallle of 
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re the B e sse I-functions 

(56) 

ld as an asymptotic case of (4) for E -+ 00 

's. 
function (56) has nodes at Yo V2E = qrr 
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lim V for the I s level as an example we have by (56): 

Integration gives: 

V = - {C + In 1t - Ci(21t)}rO' 1 = - 2.4422rO'I. (61) 

with C = 0.5577, the constant of E u 1 e r-:\1 a s c her 0 n i, and 
Ci(2rr) the cosine integral for the argument 2-;: egualling -0.0271. 

For Yo -+ 0 the potential energy V -+ - 00, but because E is 
proportional to rO'2 it is really so that lim V IE = O. 

h) The concordance between the set of lew'ls at Yo -+ 0 and at 
TO -= 00 is very simple. The 1/-fold degeneracy of the levels at 
Yo = oc, where N = n, is removed when Yo is finite, until at Yo -+ 0 
the wave function is asymptotically JIH with l = 0, I, .... 11 - I 
and with N -1- 1 nodes between its limiting points. On the other 
hand the wave functions J.I• correspond to the Is, 2s, 3s, etc . levels 
with increasing number of zero-points, whereas J'I. belongs to the 
p levels etc. 

§ 4. Possible ph vS'ical £1JIportance of the problem. l\I i c h e I s, 
DeB 0 e rand B ij 1 have investigated the ground level of the 
en caged hydrogen atom for fairly large values of Yo in order to get 
an idea of the influence of pressure on the \Va ve function and by 
consequence on the polarizibility. The study" of higher level~ might 
give some information about the shift of spectral line~ under pres
sure. It must however be taken in mind that the procedure followed 
is a very rough onc. In the first place replacing of the influence of 
pressure by the action of an infinitely high and steep potential 
wall neglects the effect of Van d e r \Y a a 1 s attraction forces 
between molecnles, and gives only an idea of the effect of rep\ll~ion 
forces, that act at very high density. Also the rcsonance broadcning 
of levels when atoms 01 the same kind come close togetner is not 
taken into account, so that we must think that the cage around the 
hydrogen atom considered, cloes not consist of hydrogen atoms. 

It may however all the same be concluded that the shift of spectral 
wave lengths can be a con iderable one und er a pression of some 
hundreds or thousands of atmospheres. This is visible in figure J, 
because ro = 7 corresponds with III atmospheres and Yo =" 5 with 
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4860 atmospheres (pressure = - (dE/dyo) /4rr:y~). The shifts of spectral 
lines could also have an influence on the Lor e n t z-L 0 r e n z 
function. In fact the behaviour of the Lor e n t z-L 0 r e n z 
expression 8) as function of density could be partially explained by 
assuming that the wave lengths of spectral lines diminish by an 
amount of some percents or some tens of percents (d. also 9) and 10)). 

Our thans are due to Mr A. Bot zen for valuable help with 
numerical calculations. 
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