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Summary

In the problem of the “‘compressed hydrogen atom’ the boundary con-
dition that the wave function ¢ must be zero for infinite », is replaced by
the condition that ¢ must have a zero point at a finite » = #y. This leads
to an investigation of properties of the zeros of the confluent hypergeo-
metric function. The shifts of the Is, 2s and 2p levels by compression are
calculated and tables and graphs are given for corresponding values of the
energy and of #,.

§ 1. Introduction. In the usual treatment of the Schrédin-
ger equation for the hydrogen atom the boundary conditions
imposed on the wave function ¢ are: regular behaviour in the origin
and a node at infinity. It will however be supposed here that the
hydrogen atom is enclosed in a sphere of radius 7, ) 2). At the po-
sition 7 is an infinitely high and steep potential wall. So the wave
function must now have a zero point at » =7, instead of at » = oo.
The new boundary condifion influences only the radial part R(7)
of the wave function. The equation for R(r) can be written in atomic
units *) :

d’R 2 dR 2 1
Tt g HEE IR =0, 2
with E the energy and [ zero or a positive integer.

With the relations

p =2r[n and E =— 1[2n?, (2)

*) Fundamental units e, m, and * = k/2r%. The unit of length is then ag== A*/me? and
the unit of energy is e¢?/a, (Michz=1s, De Boer and Bijl!) take ¢*/2a, as unit of
energy).
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670 S. R. DE GROOT AND C. A. TEN SELDAM

defining 7 and o, the equation reads:

PR, 2dR (1 n W+,

C- i o o
Substituting '

R= ¢ F(p), (4)

we get the equation:

. #F dF .
PE T @2 T =1 —)F =0 (3
for the confluent hypergeometic function *)
F=F(@l+1—mn2+20p). (6)

When # is an integer the series expansion for F breaks off so
as to give derivatives of Laguerre polynomials. The wave function
then has a node at , = oo, being the normal boundary condition
of the free hydrogen atom.

The purpose of this article is to calculate how the 1s, 2s and 2p
levels of the hydrogen atom are changed when it is uniformly
compressed, i.e. when a node lies at finite »,. The energy levels are
shifted to higher values through the influence of the potential wall.
Corresponding values of energy E and radius 7, of the cage will be
calculated for the whole range beginning with the large values of 7,.
The notation t) ““Is, 2s and 2p level” will be maintained, although
the number # is only an integer for 7, = co. The quantum number
1 is of course not changed by compression.

§2. The method of Michels, De Boer and Bijl. Fora
radius 7, so large, that the deviation of E from its value at 7, = oo
is still very small, Michels, De Boer and Bijl?) have
developed an approximative method. They calculated the shift

2
a(a+1)f_+____ @)
Yy +1) 2!

The confluent hypergeometric functions have specially been investigated by Whitt-
aker?). The connection of his symbols &, # and z with the variables /, n, and g used
hereis:k = n,m =1+ '/,andz = p. Buchholz'%) parametersv== iz, p and s=i{
arev=mn,p =2/ + land s = p.

1) Indicating the first symbol of this notation by N and the second by /, the number N
can be defined by saying that the wave function “NJ’ has N — I — 1 nodes between its
limiting points. This “‘principal quantum number” N coincides with the variable »
(corresponding with E by formula (2)) for r, = oo only.

4 Fla,y,p) = 1+=p +
s
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of the ground state ls, but their method can easily be extented
to the higher levels. Here it will also be calculated for the 2s and 2p
levels.

Putting F(p) = Zb -o7 and inserting this in the dlfferentlal equa-

tion the followmg recursion formula is obtamed
Tt +2+10)b, =+ 1—n)b_,. (8)

If » is an integer the series breaks off and gives a polynomial
of the degree n — 1! — 1. In that case the wave function has a
zero point at 7, = oo. If however 7, is not infinite, but still large
enough that » is nearly an integer, we can put

n = N + B with N integerand | | K N 9)
and
PR TP ST
Sl 2(N + 82— 2Nz T e (9)

where the first term in the last member represents the energy
value for r, = oo.

Substituting this in the recursion formula (8) and applying |B| <N,
approximations for the coefficients b, are found. With the boundary
condition that, for finite »,, reads:

F(po) =0, (11)
one can easily find the first order correction for the Is-level,
where N =1 and / =0:

£ 1 1
Bls: o0 1 = ’ (12)

T 27
b =+

the formula of Michels, De Boer and Bijl
The calculations for the 2s and 2p levels, where N =2 and

! =0 and 1, yield:

48

—

N | - o
?2'_-——% .- T R Tk o}_i: __I___ , (13)
fo = Te—1)(x3-1)1°° o 2 Ze—1) 41!

1 1
B~ e . (14)
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672 S. R. DE GROOT AND C. A. TEN SELDAM

the 1s-level for », =35, 6,7 and 8 atomic units, and Sommer-
feld and Welker? applied the formula (12) to , =3 and 4
atomic units.

Numerical calculation of the sums, occurring in the expressions (12),
(13) and (14) can be largely simplified, because it can be shown that they
are related to the exponential integral, that has been tabulated 5). To
prove this first of all it can be stated that the sums of equations (12) and
(14) are of the general type

oo xT 0
“ —_— 1
) = = Z—s (15)
whereas the sum in (13) is equal to
xfo(*) — fi(x) + dx. (16)
The functions f,,(¥) can be connected to the general ‘‘exponential inte-
gral”’, that will be represented here by the symbol Fi:

x
Fiz(x) = fefx™ dx, (17)
1 |

with the following relation

fm(®) = {Fip (%) + gmx) — (m)7In 5} + £, (1) — gm(1), (18)

where g,, is a polynomial in x71:

m l
= E _ 19
Em T —— (19)

The formula (18) can be derived by developing the exponential under
integral sign of (17) and integrating by terms.
The sums f,,(1) dre constants; for instance:

f1(1) = 0.59962032, f,(1) = 0.19066925 and f;3(1) = 0.04635136 (20)
Partial integration leads to a recursion formula for the functions Fi
of (17)

MmFiy, . 1 (x) = Fi,(x) —ea™ ¢, (21)
so that Fi, can be expressed with Fi; and elementary transcendent
functions. Lastly Fi, is, apart from an additive constant, equal to the
tabulated %) exponential integral Ei:

Fiy(x) = Ei(x) — Ei(l) = Ei(x) — 1.895168, (22)
where
Ei(x) = lim fe Lt ij 1 ar). (23)
€e—>0 —oo

The formulae (15)-(22) enable a simple calculation ot the expressions
(12)-(14).
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In the region of large x it is sometimes convenient, in view of the slow

convergence of the series (12)—(14) and the occurance of nearly equal terms
of opposite sign in (18) to use the known semi-convergent asymptotic

expansions of the exponential integral.

Table 1 contains the results of the calculations. In figures 1 and 2
the energy E is plotted as function of the radius 7, of the sphere
in which the hydrogen atom lives. The dotted lines represent the
asymptotic approximations of this paragraph.

TABLE I
E E E
To 15 level 25 level 2p level
e =l —'/s —'/s
20 —0.12499 | --0.12500
15 —0.12451 —0,12477
10 —0.1162 —0.1194
9 —0.1118 —0.1169
8 | —0.499971) —0.1055 —0.1124
7 | —0.49986 1) —0.0974 —0.1058
6 | —0.499271)
5 | —0.496551)
4 | —0.4852 2
3 | —0.4475 ¥
o _? 1 ; ? ll 'hlom-c waste

—_—

=0.5—
stomic
wnits’

Fig.1. Detail of the (E, rp)-curve for the 1slevel. The dotted linc indicates

the asymptote found by the method of Michels, De Boeraud
Bijl. The line E = — 0.5 is also an asymptote.

The exact curves that will be calculated in next section are in-
dicated by the symbols 1s, 2s and 2p. The deviations of the asyimnp-
totes calculated here from the real curve show where the approxe
mative method is valid, when a certain accuracy is chosen. For the
2sand 2p levels the approximation is only applicable down to a

value of 7,, much larger than that for the Is level.
L
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674 S. R. DE GROOT AND C. A. TEN SELDAM

The second level has split up into two adjacent levels, such that
the 2p orbit is more stable than the 2s orbit.

o s 3 ? s 2 :o..g.::; ynits
-
~0.050}~
~0.100}-
€
-0.125 —I——— o o e R s
stomic
units

Fig. 2. Detail of the (E, 7g)-curves for the 2s- and 2p-levels. Dotted lines
are the tangents at E = O and the asymptotes of the approximation of § 2.
E = — 0.125is also an asymptote for both curves.

§ 3. Nodes of the wave functions. When certain values of the azi-
muthal quantum number / =0, 1,2, .... and of the energy E
(corresponding with # by formula (2) ; # can eventually be imaginary

"TABLE II
The 1s-level (N =1, = 0)
E s from

2 atomic units | atomic units section
1 —0.500 oo 3a
1.004 —0.4960 5.020 3b
1.017 —0.4834 4.068 3b
1.064 —0.4417 3.192 3b
1.123 —0 3965 2.807 3b
1.236 —0.3273 2.472 3b
1.467 —0.2323 2.200 3b
1.500 —0.2222 2.178 3b
2 —0.1250 2.000 3a
2.500 —0.0800 1.934 3b
3 —0.0566 1.902 3a

oo 0 1.835 3¢
31 0.0566 1.778 3d
213 0.125 1.711 3d
i C.S00 1.448 3d
0.573 i 1.928 1.15% 3f
0.509 i 2.193 1.08% 3f
0.446 ¢ 2518 1.01 3f
0.3821 3.427 0.91 3f
031813 4.935 0.81 3f

01 oo 0 3e

S e v a—————
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and non-integer) are chosen, the wave function (4), (6) is known as
function of » or p.

Each time when a zero point of this wave function is found this
node can be considered as the radius 7o of the cage in which the
hydrogen atom is compressed. This gives sets of corresponding
values of E and 7, For / =0 and no nodes between » =0 and
y =17, a point of the 1s-level energy curve is found.

When for I = O there lies one node between the limiting points
of the coordinate 7, this is a wave function of a 2s-state. For / =1
and when no zero point occurs, one finds points of the 2p-curve,
etcetera. The various regions of energy will now be considered and
methods described of finding nodes.

a) E <0. When # is an integer, the wave function degenerates
into a derivative of a Laguerre polynomial, with a number of

TABLE III
The 2s-level (N = 2, 1 = 0)
E s from
" atofhic units | atomic units section
2 —0.1250 o da
2.072 —0.1165 10.36 3b
2.213 —0.1021 8.852 3b
2.5 —0.0800 7.815 b
2.559 —0.0764 7.677 3b
2.885 —0.0601 7.212 3b
3 —0.0566 7.096 3a
3.412 —0.0429 6.824 3b
3.5 —0.0408 6.785 3b
4 —0.0312 6.611 3a
5 —0.0200 6.429 3a
oo 0 6.153 3¢
41 0.0312 5.808 d
31 0.0556 5.589 3d
21 0.1250 511 3d
i 0.5000 3.823 3d
0.90214 0.6143 3.609 3
0.637 1 1.234 291° 3f
0.557 1 1.611 2.67 3
0.477 1 2.193 2.39 3f
0.446 % 2.518 2.26% 3
0.4141 2.920 2.15 3
0.3821% 3.427 2.03 3f
0.350 ¢ 4,078 1.92 3f
0.31813 4.935 1.76 3
0 1 co 0 de
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TABLE IV
The 2p-level (N =2,1=1)
E T from

" atomic units | atomic units section
2 —0.1250 oo 3a
2.047 —0.1193 10.235 3b
2.135 —0.1097 8.540 3b
2.363 —0.0895 7.089 3b
2.5 —0.0800 6.701 3b
2.599 —0.0740 6.497 3b
3 —0.0566 6.000 3a
3.5 —0.0408 5.696 3b
4 —0.0312 5.528 3a
S —0.0200 5.355 3a

oo 0 5.086 3c
414 0.0312 4.770 3d
31 0.0556 4.554 3d
24 0.1250 4.110 3d
% 0.5000 2.698 3d
0.778 ¢ 0.8261 2.528 3d
0.4451 2.524 1.68 37
0.401 1 3.116 1.55 3f
0.356 3.943 1.41 3f

9l % oo 0 3e

t 2

# — I — 1 nodes between the points » = 0 and » = oco. For several
values of # and for / = 0 and 1 zero points have been calculated and
given in tables II-IV (indication § 3a) and represented in the fi-
gures 1-3. Here again the splitting up of the second level into 2s
and 2p curves is evident. It is obvious that by using only integer
values of # a large gap in the curves is left between # =17 4 1
and n =/ -+ 2 i.e. between 7, =o0 and a comparatively small
value of 7,. On the side of large radii 7, this gap could be filled by the
method of § 2, but this gives only approximative values.

b) For the rest of the gap in the curve it is necessary to find
zero points of the confluent hypergeometric function with real
arguments. These can be interpolated from tables §) 7) with the
help of well-known interpolation procedures (v. tables I1I-1V and

figures).

¢) E =0. The limiting case of 7> co has been studied by
Sommerfeld and Welker?2), especially for the Is level. The
confluent hypergeometric function (6) for 7 — co is proportional
toa Bessel function:

Hm F(l+ 1 —n, 20 4 2,0) 0 oy 2Von) = Jou(

n—>00

2\/5). (24)
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The first and second node of J; give the values for .the Is and 2s
level. The first zero point of J; gives the intersection of the 2p
level with the ry-axis. (v. tables II-IV and figures).

fl\n =

Batomic units

Fig. 3. The (E, ry)-curves for the 1s, 2s and 2p-levels. Asymptotes are the
dotted lines and 7y = 0, E = — 0.5 (for the 1s surve) and £ = — 0.125
(for the 25 and 24 curves).

Sommerfeld and Welker stressed the importance of a more
general investigation of the behaviour of confluent hypergeometric
: hy - S
functions F in the neighbourhood of # = ccor E = 0. l-or‘ th"lt pu—rlp«l).;c,.
function F of equation (6) must be expanded as a power-series in n™. | v
the definition of F (7) and with (6) and (2) the wave function can be
written : o

e -1
F(l+1—n, 2142, 2rn~ Y = E ol H {1—(+v)n~"}. (25)
LA R st M AR ETT i
k
The product can be written as the sum 20(
y=
is the sum of the (f,) products of v different numbers of .tllf' Series
I+ 1,1+ 2, ....,1 -+ k (without repetitions). The first three *) are

A
i)Y “:J ¥ where av"

26)
ué" = ill; :2;’)
abt = ph(k + 21 + 1), -
abt =Rk — 1) {32 + Mk + 1)1+ Yo (kR + 1) 3k + 2} (2

ale . . i
*) The Necwton relations ?) that can eventually be used to calculate these co

cients are of course also valid here.

T T
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The confluent hypergeometric function can now be expressed as:

Fl+1—mn, 2042 27l = T v @, (7), (29)
- vzo k1 (o,\k
& (=1 e (2"
YW S HEr s i+ A
The functions @;,, can be transformed to sums of Bessel func-
tions, when the coefficients a®* are written in a convenient form. It
follows then that the first functions @;, are, when the abbreviation
z =2V 2risused:

@yolz) = (20 + 1! (3721 Ty (2), @1)
Oyy(s) = 12+ D! G272 Ty 2), (32)

@ia(2) = 2@ + D[ E72 T (@122 44D + ()7 ¥ (2142 +
+3(3) 7 T (@) H{— (1) (424 41) —232) 724 Ju(2)]. (33)

To obtain these expressions, a®/k! should be written down as a sum of
reciprocal factorials; so is e.g. the form
a¥' Bl 3l + 1,

T a—2r Ta—a TE—a (34)

(30)

. appropriate. After that, recurrence formulae for the Bessel func-

tions should be applied.

Of special interest for the electronic levels, studied is this note, are the
cases [ = O: '

Dool2) = (*h2)"1J1(2), ) (3%5)

@o,1(2) = 'z J1(2), (36)

00.2(3) == {‘/u('/tz) T x/l('/:z)z} Ji(2) — l/m(l/t")z Jo(2), (37)
and = 1z

@ 0(2) = 6(h2) 2 J5(2), (38)

@y1(2) = 3(1a2) ™" Jala), (39)

@y 2(2) ={6(12) >+ (1a2) T L)} J3(2) H{— 201221} Jo(2). (40)

To find the character of the (E, #y)-curve in the neighbourhood of
E = 0 or »~} = 0 it 1s necessary to consider the nodes r, of F or, by way
of approximation, of a certain number of terms of the development (29)
When we take:

Do + 27 By + 02 @y =0, (41)

and put
7o = Yoo + o1 t o2, (42)
where ry, is of zeroth order and 7y, and 7y, of first and second order in 7!,

it is found after expanding the function ® in T a y l o r series and equa-
ting terms of equal order 2):

B i e AT e S e L s i “"""‘
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ngetric function can now be expressed as:
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&+ ) G217, 00, @31
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T (8P 1284 41) 4 (322 H (24 2)

— (37 (424D — 242724 1], (33)
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fud+1 2l 43, /a
2)! (R —3)! " (k—4)!

(34)
.k:urrence formulae for the Bessel func-

| electronic levels, studied is this note, are the
| '

(2), (35)
(36)

§+ '/l(l/zz)s} Ji(z) — ‘/u('/:‘)z Jo(2), (37)

1l

st (08

J3(2), (39

"+-/.('/.z)} J3(2) +{— 2('n2)"2—1} J,(2). (40)

!
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sarv to consider the nodes rp of F or, by way
1in number of terms of the development (29)

f_l O + 2@y, =0, (41)
‘\
=100 + 701 + 7z, (42)

‘nd 701 and ry, of first and second order in un- 2
‘he function @®in Taylor series and equa-

|
|

y
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Do (r00) =0  or [y (2V 2ry) = 0 gives 7y, (43)
701 = 0, (44)
;0 (r00) 702 + 72 Dyp (rg0) = O gives rg,. (45)

It follows by using some relations between Besse;l functions and
their derivatives, that for s-levels (I = 0):

Y02 = n? rg ; (46)

so that, in total:
ro =100 + 4172 1% = 100 — } E 1o (47)
this being the equation of the tangent in E = 0 at the (E, ry) curve for

a s-level, with 7y, following from the nodes of the Be ssel function J;.
The first node gives the tangent of the Is-level:

1o = 1.835 — 1.123 E, (48)

whereas the second node gives the tangent of the 2s-level:
= 6.153 — 12,620 E. (49)

For the p-levels (I = 1) it is found after a simple calculus that
o2 = 2 (Yo + ¥0), (50)
and so for the tangent

ro = 700 + 72 (3700 + 730). (51)
7o = 700 — E(3700 + ¥%). (52)

with 75 from J3(24/27y9) = 0.
For the 2p-level we need the first node of J3, so that the tangent is

7o = 5.086 — 12.015 E. (83)
The tangents (49) and (53) are indicated in figure 2.

d) E > 0. In the region of positive energies *), the confluent
hypergeometric function (6) has imaginary parameters # and
p (v.(2)). No tables for this region being available for / =0 and
! =1, zero points have been calculated by using for the confluent
hypergeometric function the series expansion of Buchholz?).
The results are given in tables II-IV and plotted in figure 3.

¢) E — oco. For the asymptotic case of small radii 7, and thus
large positive energies in the problem of the encaged hydrogen atom
the influence of the proton on the electron can be neglected in

*) The curve of reference 2 is only roughly sketched in that region and numerically not
reliable.
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comparison with the action of the potential wall. To show this let 2
approach zero in the equation (3), giving:

@R | 2dR 1, W41,

R e R S A &R
or modified by writing p = 2ru! = 2ir V2E (2)

@R | 2dR | (. W41,

BT Tm T g =0 58

This is indeed the equation of the particle in a spherical box.
The solutions of (55) are the B essel-functions

Jx+;(”‘/§E). (56)

that can also readily be found as an asymptotic case of (4) for £ — oo
as a series expansion shows.

For/ =0the Bessel function (56) has nodes at 7, V2E = g=
where ¢ is an integer. So for the energy curve of the 1s level the
cubic hyperbole '

B =x2% (57)
is found to be an asymptote. For the 2s level it is:
E =2, (58)

whereas for / =1 the first node of (56) lies at 7,V2E = 4.4934
so as to give :
E =10.0953/2 (59)
for the asymptote of the 2p level. All three asymptotes are indicated
in figure 3 as dotted lines. The », =0 axis is evidently also an
asymptote of the energv curves calculated.

f) By plotting £ as a function of 7, the asymptotes (57),
(58) and (59) become straight lines through the origin, being there
tangent to the corresponding (E7%,r,) curves. It is easy ro find
now graphically points of the (E,#,) curve.

The results are listed in tables II-IV with the indication § 3/
and represented in figure 3.

g) Although it follows from section ¢ of this paragraph that the
energy values E for lim r, — 0 are the same as for a spherical box,
it is not allowed to conclude that the quantum mechanical average
potential energy V" is zero, as with the box.

In fact, it is only true that lim V/E =0. Taking the value of
re—>0

———,

¥g =4
the w
and v

hand |

with
p lev
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De
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lim V for the Is level as an example we have by (56):
rg—>0

V= —oj'.]% (rer [ro)r=r2dr /of"]i (zer[ro)rdr. (60)

Integration gives:
V =—{C + Inn— Ci2m)}r5' =— 2.4422r5". (61)
with C = 0.5577, the constant of Euler-Mascheroni, and

Ci(2x) the cosine integral for the argument 2= equalling —0.0271.

For 7, — O the potential energy V- — oo, but because E is
proportional to #3? it is really so that lim V/E =0.

h) The concordance between the set of levels at »,— 0 and at
ro = oo is very simple. The #-fold degeneracy of the levels at
ro = oc, where N =, is removed when 7, is finite, until at 7, — 0
the wave function is asymptotically J,;; with / =0,1, .... n—1
and with N — ! — 1 nodes between its limiting points. On the other
hand the wave functions [, correspond to the Is, 2s, 3s, etc. levels
with increasing number of zero-points, whereas Js, belongs to the
p levels etc.

§ 4. Possible phvsical importance of the problem. Michels,
De Boer and Bijl have investigated the ground level of the
encaged hydrogen atom for fairly large values of 7, in order to get
an idea of the influence of pressure on the wave function and by
consequence on the polarizibility. The study of higher levels might
give some information about the shift of spectral lines under pres-
sure. It must however be taken in mind that the procedure followed
is a very rough one. In the first place replacing of the influence of
pressure by the action of an infinitely high and steep potential
wall neglects the effect of Van der Waals attraction forces
between molecnles, and gives only an idea of the effect of repulsion
forces, that act at very high density. Also the resonance broadening
of levels when atoms of the same kind come close togetner is not
taken into account, so that we must think that the cage around the
hydrogen atom considered, does not consist of hydrogen atoms.

It may however all the same be concluded that the shift of spectral
wave lengths can be a considerable one under a pression of some
hundreds or thousands of atmospheres. This is visible in figure 3,
because r,=7 corresponds with 111 atmospheres and ry==5 with

T T

e

Y T AT € w””ﬂw
. Sl S ae - |
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4860 atmospheres (pressure = — (dE/dro) /4r3). Theshifts of spectral
lines could also have an influence on the LorentzLorenz
function. In fact the behaviour of the Lorentz-Lorenz
expression %) as function of density could be partially explained by
assuming that the wave lengths of spectral lines diminish by an
amount of some percents or some tens of percents (cf. also ?) and ).

Our thans are due to Mr A. Botzen for valuable help with
numerical calculations.
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